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Abstract

The objective in this study is to investigate the influence of the spatial resolution of the
rainfall input on the model calibration and application. The analysis is carried out by
varying the distribution of the raingauge network. The semi-distributed HBV model is
calibrated with the precipitation interpolated from the available observed rainfall of the5

different raingauge networks. An automatic calibration method based on the combina-
torial optimization algorithm simulated annealing is applied. Aggregated Nash-Sutcliffe
coefficients at different temporal scales are adopted as objective function to estimate
the model parameters. The performance of the hydrological model is analyzed as a
function of the raingauge density. The calibrated model is validated using the same10

precipitation used for the calibration as well as interpolated precipitation based on net-
works of reduced and increased raingauge density. The effect of missing rainfall data
is investigated by using a multiple linear regression approach for filling the missing val-
ues. The model, calibrated with the complete set of observed data, is then run in the
validation period using the above described precipitation field. The simulated hydro-15

graphs obtained in the three sets of experiments are analyzed through the comparisons
of the computed Nash-Sutcliffe coefficient and several goodness-of-fit indexes. The re-
sults show that the model using different raingauge networks might need recalibration
of the model parameters: model calibrated on sparse information might perform well
on dense information while model calibrated on dense information fails on sparse in-20

formation. Also, the model calibrated with complete set of observed precipitation and
run with incomplete observed data associated with the data estimated using multiple
linear regressions, at the locations treated as missing measurements, performs well.
A meso-scale catchment located in the south-west of Germany has been selected for
this study.25
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1 Introduction

Precipitation data is one of the most important inputs required in hydrological model-
ing and forecasting. In a rainfall-runoff model, accurate knowledge of precipitation is a
prerequisite for accurately estimating discharge. This is due to that fact that represen-
tation of precipitation is crucial in determining surface hydrological processes (Syed5

et al., 2003; Zehe et al., 2005). No model, however well founded in physical theory
or empirically justified by past performance, will be able to produce accurate hydro-
graph predictions if the inputs to the model do not characterize the precipitation inputs
(Beven, 2001). Precipitation is governed by complicated physical processes which are
inherently nonlinear and extremely sensitive (Bárdossy and Plate, 1992). Precipitation10

is often significantly variable in space and time within a catchment (Krajewski et al.,
2003). New technologies have been developed such as satellite imaging and weather
radar remote sensing (Collier, 1989; Meischner, 2003; Uhlenbrook and Tetzlaff, 2005),
in order to obtain spatially and temporally highly resolved precipitation data to meet
the requirements of advanced hydrological models. However the reality is that most15

recording systems for the majority of the catchments are still point-measuring rain-
gauges. Raingauges are fundamental tools that provide an estimate of rainfall at a
point. Generally, point measurements of raingauge accumulations are distributed in
space over the catchment by interpolation techniques (i.e. kriging, Thiessen polygons,
and inverse distance method).20

A large number of previous studies investigate the effects of raingauge sampling,
in terms of number of raingauges and their locations, on the estimation uncertainty of
precipitation or hydrological variables. This objective in the research community has
been mainly achieved through the following two approaches: (a) applying theoretical
models of the rainfall process (Krajewski et al., 1991; Peters-Lidard and Wood, 1994)25

or (b) using high resolution rainfall data from dense networks or weather radars (Seed
and Austin, 1990; Duncan et al., 1993; Finnerty et al., 1997; St-Hilarie et al., 2003).
Additionally, many researchers have investigated the influence of the density of the
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raingauge network on the simulated discharge, with both real and synthetic precipi-
tation and discharge data sets. Many studies have reported the effect of raingauge
network degradation on the simulated hydrographs (Faures et al., 1995; Brath et al.,
2004; Dong et al., 2005). Nevertheless, inadequate representation of spatial variability
of precipitation in modeling can be partly responsible for modeling errors. This may5

also lead to the problem in parameter estimation of a conceptual model (Chaubey et
al., 1999).

It may be of interest to investigate the results of the simulations obtained with the
rainfall input when the model is parameterized according to a different type of input
data. It is, in fact, frequently the case that a raingauge network changes due to an10

addition or subtraction of raingauges. The raingauge network can be strengthened
by the addition of new instruments or using weather radar, so that a more detailed
representation of rainfall is allowed, but, for calibration purposes, past observations are
available only over the original, less numerous measuring points. On the other hand, in
the case of an operational flood forecasting system, the opposite situation may occur.15

In the flood forecasting system, the rainfall-runoff model is usually calibrated using
all the available flood events and precipitation data. However, during the operational
forecasting time, the precipitation data from all past observation stations may not be
available due to a malfunctioning of a few of the observations in the network or the
observation data may not be available online. In such cases, it is crucial to understand20

if the parameters calibrated using the rainfall coming from one type of network have the
ability to represent the phenomena governing the rainfall-runoff process with the input
provided by the different configuration of the raingauge network.

The aim of this paper is, thus, to investigate the influence of rainfall observation
network on model calibration and application. First, a method based on the combi-25

natorial optimization algorithm simulated annealing (Aarts and Korst, 1989) was used
to identify a uniform set of locations for a particular number of raingauges. Second,
the semi-distributed conceptual rainfall-runoff model HBV was used to investigate the
effect of the number of raingauges and their locations on the predictive uncertainty of
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the hydrological model. The hydrological modeling performances of the networks were
analyzed through the comparison of Nash-Sutcliffe coefficient and other goodness-of-
fit indices. Latter the influence of the rainfall observation network on model calibration
and application is examined. This study seeks to determine whether the parameters
calibrated using the rainfall coming from one type of network have the ability to repre-5

sent the phenomena governing the rainfall-runoff process with the input provided by a
different configuration of the raingauge network. The model is calibrated using precipi-
tation interpolated from different raingauge networks. The calibrated model is then run
for the validation period using the precipitation obtained from the raingauge network,
which was not used for the calibration. Other experiments were carried out to analyze10

the reliability of supplementing missing precipitation measurements used for the cali-
bration with data estimated using a multiple linear regression and running the model
using that precipitation combined with available observed precipitation.

2 The study area and data

The upper Neckar catchment, located in Germany, was selected as test catchment.15

The study area covers an area of approximately 4000 km2. The study catchment area
was divided into thirteen subcatchments depending on the available discharge gauges
(Fig. 1).

Table 1 shows the sizes of the different subcatchments. The climate of the catch-
ment is characterized by warm-to-hot summers with generally mild winters, and it is20

wet all seasons. The coldest and hottest months in the study area are January and
July respectively. The elevation for the catchment ranges from about 250 m a.s.l. to
around 1000 m a.s.l., with a mean elevation of 546 m a.s.l. Slopes in general are mild;
approximately 90% of the area has slopes varying from 0◦ to 15◦, although some ar-
eas in the Swabian Jura or in the Black Forest may have values as high as 50◦. The25

physiographical factors considered in this study were derived from different sources:
(1) Digital Elevation Model with a spatial resolution of 50 m×50 m; (2) a digitized soil
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map of the state of Baden-Württemberg at the scale 1:200 000 and (3) Land use map
(LANDSAT satellite image for the year 1993) with a spatial resolution of 30 m×30 m.
Daily discharge data from 13 gauging stations was used for model evaluation. All data
was provided by the State Institute for Environmental Protection Baden-Württemberg
(LUBW). The daily amount of precipitation, daily mean, maximum and minimum tem-5

peratures distributed in and around the study catchment was acquired from the German
Weather Service (DWD).

2.1 Raingauge selection method and data preparation

The raingauges that have no missing measurements for the period from 1961 to 1990
and are located within or up to 30 km from the study catchment were used as a ba-10

sis of complete raingauge network. The raingauge networks were selected from the
complete network, consisting of 51 raingauges, using the combinatorial optimization
algorithm simulated annealing (Aarts and Korst, 1989). The main idea behind the rain-
gauge selection algorithm is to identify a uniform set of locations for a particular number
of raingauges.15

An appropriate selection algorithm was applied repeatedly to obtain optimal locations
of different number of raingauges. Seven networks consisting of different number of
raingauges ranging from 5 to 51 were obtained. Figure 2 shows the spatial distribution
of the selected networks.

The basic inputs for the HBV model are precipitation, air temperature and potential20

evapotranspiration. The point measurements obtained from the selected raingauge
networks were interpolated on a 1 km2 grid using the external drift kriging method
(Ahmed and de Marsily, 1987). It should be noted that the rate at which precipitation
decrease varies with increasing elevation. The square root of the topographic elevation
was assumed as a good approximation to account for this variation and it was used as25

the drift variable for precipitation (Hundecha and Bárdossy, 2004). Because the tem-
peratures show a fairly constant lapse rate, topographic elevation was used as the drift
variable for interpolating the temperature from the available point measurements. The
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potential evapotranspiration was computed using the Hargreaves and Samani method
(Hargreaves and Samani, 1985) on the same grid used for the interpolation of meteo-
rological variables.

Figure 3 depicts the standard deviation of the interpolated precipitation over the
catchment. It can be observed that the variability of the interpolated precipitation5

decreases with the increasing number of raingauges, but there is no change in the
variability beyond a certain number of raingauges.

3 Model and methods

The HBV model is a semi-distributed conceptual model and was originally developed
at the Swedish Hydrological and Meteorological Institute (SMHI) (Bergström and Fors-10

man, 1973). The area to be modelled is divided into a number of subcatchments and
each subcatchment is further divided into a number of zones based on elevation, land
use or soil type or combinations of them. Snow accumulation and melt, actual soil
moisture and runoff generation processes are calculated for each zone using concep-
tual routines. The snow accumulation and melt routine uses the degree-day approach.15

Actual soil moisture is calculated by considering precipitation and evapotranspiration.
Runoff generation is estimated by a non-linear function of actual soil moisture and pre-
cipitation. The dynamics of the different flow components at the subcatchment scale
are conceptually represented by two linear reservoirs. The upper reservoir simulates
the near surface and interflow in the sub-surface layer, while the lower reservoir repre-20

sents the base flow. Both reservoirs are connected in series by a constant percolation
rate. Finally there is a transformation function, consisting of a triangular weighting
function with one free parameter, for smoothing the generated flow. The flow is routed
from one node to the other of the river network by means of the Muskingum method.
Additional description on the HBV model can be found in Lindström et al. (1997) and25

Hundecha and Bárdossy (2004).
As elevation affects the distribution of the basic meteorological variables such as
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A. Bárdossy and T. Das

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

precipitation and temperature as well as the rate of evaporation and snow melt and
accumulation, it represents an important catchment characteristic that was considered
in defining zones in this study. Elevation zones were defined using a contour interval
of 75 m. Areas between successive contour intervals were considered homogenous
with respect to elevation. The elevation of the study area varies from about 250 m5

to around 1000 m and therefore, a maximum of 10 elevation zones were defined in
each subcatchment. In order to model the processes in each zone, the values of the
mean daily precipitation amount and the mean daily temperature were assigned to
each zone. The meteorological variables for each zone were estimated as the mean
of the interpolated values on the regular grids of 1 km2 located within a given zone.10

The potential evapotranspiration was also averaged over each zone from the potential
evapotranspiration calculated on 1 km2 grids located within a given zone.

3.1 Model calibration and simulations

The HBV model was calibrated using the interpolated precipitation obtained from the
different raingauge networks. The other input data, namely daily mean temperature15

and daily potential evapotranspiration, were kept constant for each calibration. The
automatic calibration method based on the combinatorial optimization algorithm simu-
lated annealing (Aarts and Korst, 1989) was used to optimize the model parameters.
For this optimization, an objective function composed of Nash-Sutcliffe coefficients of
several temporal aggregation scales was maximized, while a reasonable range was20

fixed to constrain model parameters.
The standard split sampling model calibration procedure was followed. The model

calibration period runs from 1961 to 1970. The subsequent period up to 1990 was
used to validate the calibrated model. The interpolated precipitation, based on daily
recorded observations, from the different raingauge networks was used to simulate the25

model discharges for the calibration and validation periods. Disaggregation of the daily
amount by uniformly distributing it through out the day was implemented and the model
was run at a time step of 6 h for the study (Hundecha and Bárdossy, 2004).
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3.2 Simulation comparison statistics

The simulation results obtained using different raingauge networks were compared
using different statistical criteria, namely, the Nash-Sutcliffe coefficient, the relative ac-
cumulated difference, the peak error and the root mean squared error.

The Nash-Sutcliffe coefficient (R2
m) (Nash and Sutcliffe, 1970) is defined as5

R2
m = 1 −

N∑
i=i

(Qs(ti ) −Qo(ti ))
2

N∑
i=1

(Qo(ti ) −Qo)2

(1)

Qo(ti ) [m3/s] observed daily discharge
Qs(ti ) [m3/s] simulated daily discharge

Qo [m3/s] mean observed daily discharge
N [–] number of time steps

The relative accumulated difference and the peak error were computed to judge the
performance of the model with regard to its ability to maintain the water balance and
its estimation capacity of the peak flow.10

The relative accumulated difference (rel. accdif.) is defined as:

rel. accdif. =

N∑
i=1

(Qs(ti ) −Qo(ti ))

N∑
i=1

Qo(ti )

(2)

The peak error is defined based on the relative difference of the mean annual maxi-
mum simulated and mean annual maximum observed discharges:

peak error =
Q̄s(max) − Q̄o(max)

Q̄o(max)

(3)15
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Qo(max) [m3/s] mean annual maximum observed discharge

Qs(max) [m3/s] mean annual maximum simulated discharge
The root mean squared error (RMSE) is defined as:

RMSE =

(
1
N

(
N∑
i=1

(Qs(ti ) −Qo(ti ))
2

))0.5

(4)

Further, the mean model performance (R2
mm) is calculated using the Nash-Sutcliffe

coefficient values obtained at the discharge gauges during the calibration and validation5

periods.

R2
mm =

1
L

L∑
i=1

[R2
m(calibration)i + R2

m(validation)i ]

2
(5)

where:
R2
mm [–] mean model performance

R2
m(calibration)i [–] Nash-Sutcliffe coefficient during calibration period

R2
m(validation)i [–] Nash-Sutcliffe coefficient during validation period

L [–] number of subcatchments

Higher values of R2
mm indicate better mean model performance.10

The value of model parameters’ transferability (Tm) is also computed to evaluate
their transferability during the simulation period when the model parameters were not
allowed to change. Tm is calculated using the following equation.

Tm = max
[(

R2
m(calibration)i − R2

m(validation)i
)]

i=1,...,L (6)

As we are more concerned about deterioration of model performance in the valida-15

tion period, therefore, the maximum positive difference of the model performance was
only considered in the above equation.
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Lower values of Tm indicate better model parameters’ transferability.
Additionally, the average absolute error (AE ) and root mean squared error (see Eq. 4)

were calculated using the model simulated and observed discharges for each annual
maximum flood event. AE is defined as:

AE =
1
Np

Np∑
i=1

∣∣(Qsp(ti ) −Qop(ti )
)∣∣ (7)5

where:
Qop(ti ) [m3/s] observed daily discharge within each annual event
Qsp(ti ) [m3/s] simulated daily discharge within each annual event
Np [–] number of time steps in a particular peak event

3.3 Simulation results

A summary of the model performance for the calibration period for selected three
gauges is shown in Table 2. The model performance for the validation period using10

precipitation produced from different raingauge networks are shown in Table 3. The
model performances are shown for the gauges at Horb (Neckar) and Suessen (Fils)
because there are major variations in the number of raingauges within each network
for the drainage area of these two gauges. Considering Table 3 for Horb (Neckar),
it can be observed that the network consisting of 5 raingauges yields the minimum15

model performance, whereby the highest model performance was observed using the
20 raingauge network. Moreover, increasing the raingauge numbers above 20 did not
improve the model performance. The best model performance for Suessen (Fils) was
observed using the 15 raingauge network. On the other hand, the best model per-
formance for the Plochingen (Neckar) was observed using the 30 raingauge network.20

This shows the influence of the spatial distribution of raingauges within each subcatch-
ment. The number of raingauges is different for different subcatchments within each
selected network (Fig. 2). The difference in number of raingauges within and close to
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each subcatchment influences the interpolated precipitation.
Figure 4 shows the average Nash-Sutcliffe coefficients for the calibration and valida-

tion periods. The average values were calculated using the Nash-Sutcliffe coefficients
obtained for different gauges over the catchment.

A considerable deterioration in model performance was observed when using the5

network consisting of 5 raingauges, both for the calibration and validation periods (as
shown in Fig. 4).

Table 4 represents the mean model performance and model parameters’ transfer-
ability corresponding to the different raingauge networks.

It can be observed that the lowest mean model performance was obtained using the10

5 raingauge network. The highest value was observed using the 30 raingauge network.
However, there was not remarkable change in the mean model performance when the
number of raingauges was increased to more than 15. The worst model parameters’
transferability was observed using the 5 raingauge network.

The inability of the 5 raingauge network to adequately represent the precipitation15

field seems to negatively influence the estimation of parameters, further increasing
the remarkable simulation errors. Moreover, the unsatisfactory results obtained using
the 5 raingauge network certainly indicate a definite lack in its ability to represent the
precipitation fields. On the other hand, the model performance was not significantly
improved when using more than 15 raingauges. This is because there are only 2020

raingauges within and close to the catchment. Estimating the precipitation fields using
raingauges located considerably at far distance from the boundary of the catchment,
perhaps, brings more error in the model simulation.

Figure 5 shows the seasonal model performance for the Suesen (Fils) and Plochin-
gen (Neckar) gauges.25

Figure 5 indicates that the poorest model performance was observed using the 5
raingauge network. A significant inability to represent the spatial precipitation fields
using 5 raingauge network in the smaller subcatchment for the summer season can
also be observed. This is due to the fact that there are convective precipitation events
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during the summer season, which are more localized and are not well captured by the
5 raingauge network.

Further, the event statistics were calculated for each annual maximum flood event.
Figures 6 and 7 show the average absolute error and root mean squared error for the
gauges at Horb (Neckar) and Suessen (Fils), respectively.5

On average the absolute error with respect to the annual maximum discharges for
the gauge at Horb (Neckar) ranges between 6.9% and 8.4% using the precipitation
produced from varying raingauge networks. The same value for the gauge at Suessen
(Fils) ranges between 8.2% to 9.2%. The highest errors yielded using the network
consisting of 5 raingauges. On the other hand, the errors were not significantly reduced10

by increasing the number of raingauges to more than 20.
It may be noted that obtaining similar goodness-of-fit indices does not mean that the

simulation was insensitive to the spatial variability of the precipitation fields obtained
using different number of raingauges. In fact, the two models using different precipita-
tion fields did not give the same hydrograph. In general, it can be noted that using too15

coarse a raingauge network for estimating the rainfall fields can give rise to remarkable
errors. However, the network formed by the threshold number of raingauges (20–30
in the present study) provides an acceptable estimate of the precipitation fields, other
model errors dominate in this case.

4 Influence of the rainfall observation network on model calibration and appli-20

cation

In the following section, the aim of the simulation experiment was to investigate the
influence of the spatial resolution of the rainfall input on the calibration of a concep-
tual model. First, the semi-distributed HBV model was calibrated with the precipitation
interpolated from the available observed rainfall of varying raingauge networks. The25

calibrated model was then run using the same precipitation used for the calibration as
well as interpolated precipitation based on networks of reduced and increased rain-
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gauge density.
As for example, the model was first calibrated using precipitation interpolated from

10 and 20 raingauges. The calibrated model using 10 raingauges was then run using
precipitation obtained from 20 raingauges for the validation period and vice versa. This
experiment is indicated in tables and figures, latter on, as follows: 10/10: calibrated with5

10 raingauges and simulated with 10 raingauges; 20/20: calibrated with 20 raingauges
and simulated with 20 raingauges; 10/20: calibrated with 10 raingauges and simulated
with 20 raingauges and 20/10: calibrated with 20 raingauges and simulated with 10
raingauges.

It can be noticed that the model calibrated using less detailed precipitation (precipi-10

tation from 10 raingauges) often slightly improves when it was run using relatively more
detailed precipitation (precipitation from 20 raingauges) (Table 5). On the other hand,
the model performance obtained using precipitation from 20 raingauges deteriorated
when the same model was run using precipitation obtained from 10 raingauges.

In fact, the parameter values in principle may compensate for an incomplete rep-15

resentation of the precipitation field, provided they were updated by performing a new
calibration, for which the input precipitation was estimated from the reduced raingauges
network. However, there was no such type of compensation for the second case when
the calibrated model using 20 raingauges was run using precipitation obtained from
the 10 raingauge network. This demonstrates the inability of the 10 raingauges to20

adequately represent the precipitation field for the catchment.
The following simulation experiment was carried out in order to investigate whether

the estimated precipitation at raingauges with missing values (for example offline sta-
tions only used for model calibration), together with the precipitation data from the
remaining stations that were used during the model calibration, has any benefit over25

the model operated by precipitation from the reduced raingauges. A new spatial rep-
resentation of the rainfall input was considered: the precipitation was estimated using
a multiple linear regression technique (Montgomery and Peck, 1982) at specific lo-
cations (the precipitation data for the 10 raingauges network are treated as missing
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measurements for the model validation period in the present example) of a selected
raingauge network (20 raingauges network in the present example). The observed
precipitation was considered at the remaining 10 locations of the 20 raingauges net-
work. The model, calibrated with the precipitation data obtained from 20 raingauges,
was then run in the validation period using the precipitation field above described.5

Thus, in this experiment, the precipitation of the 10 raingauges (the location of these
stations are same of the 10 raingauges network) within the 20 raingauges network was
considered missing for the validation period. The multiple linear coefficients at the lo-
cations of the above 10 raingauges were derived using the precipitation measurements
of the neighboring stations and the available precipitation measurements at those 1010

raingauges.
Consider that the precipitation for a particular station is missing for some time pe-

riod. The missing measurements then can be estimated using the measurements of
the neighboring stations through the application of the multiple linear regression coef-
ficients. A multiple regression model that can describe this relationship is as follows:15

R(us) = β0 + β1R(u1) + β2R(u2) + ... + βkR(uk) + ε (8)

where R(us) denotes the missing precipitation measurements of a particular station
at a location us; u1, u2, . . . , uk denotes the precipitation measurement locations of
the remaining stations and ε is a statistical error. The parameters βj , j=0, 1, . . . , k
are called the regression coefficients (Montgomery and Peck, 1982). Coefficients are20

calculated using all available observations.
Thus, the missing measurements at the mentioned 10 raingauges were estimated

using the derived multiple linear regression coefficient using measurement data ex-
cluding the given event. The precipitation was then interpolated using the estimated
precipitation at the 10 raingauges and also the remaining 10 raingauges within the 2025

raingauge network. As a result, the interpolated precipitation field consisted of 20 rain-
gauges once again, however, with 10 raingauges of precipitation data estimated using
the multiple linear regression technique and the remaining 10 from the observed data.
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Figure 8 shows the model performance for selected six gauges during the validation
period using the different level of input precipitation information. The data shown in
Table 5 is partly used to prepare Fig. 8. In the following tables and figures 20/20Mul-
Rgre indicates model calibrated with 20 raingauges and simulated with 20 raingauges
(rainfall estimated at 10 locations considered as missing measurements).5

It can be observed that the model performed well when it was calibrated using precip-
itation from 20 raingauges and was run with an incomplete observed data set combined
with data generated using the multiple linear regression technique at the locations of
the remaining 10 raingauges.

A summary of the Nash-Sutcliffe coefficients at a 7 day and 30 day time scale in10

the validation period is shown in Table 6. Regarding modeling of runoff at higher time
scales, the model performance in terms of the Nash-Sutcliffe coefficient shows a similar
trend as that observed earlier at the daily time scale. It can be observed that the model
performance improves at the higher time scales.

Figure 9 shows the seasonal model performance obtained using the different level of15

input precipitation information for the gauges at Oberndorf (Neckar) and Horb (Neckar).
Figure 10 depicts the average absolute error and root mean squared error for the

gauge at Rottweil (Neckar).
On average the absolute error with respect to the annual maximum discharges for

the gauge at Rottweil (Neckar) ranges between 6.8% and 8.2%. The highest error was20

observed when the calibrated model using 20 raingauges was run using 10 raingauges.
The error reduced to 6.9% when the calibrated model using 20 raingauges was run
using 20 raingauges, however, with 10 raingauges of precipitation data estimated using
the multiple linear regression technique and the remaining 10 from the observed data.

This analysis, as represented in Figs. 9 and 10, indicates that model performance25

reduces when the model calibrated using more detailed input precipitation information
is run using precipitation obtained from a reduced raingauge networks. The analysis
also highlights that the missing measurements can be supplemented using a simple
multiple linear regression technique or another appropriate data filling technique.
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5 Conclusions

In this paper attempts have been made to investigate the influence of the spatial rep-
resentation of the precipitation input, interpolated from different raingauge density, on
the calibration and application of the semi-distributed HBV model. The meteorological
input was interpolated using the external drift kriging method from the point measure-5

ments of the selected raingauge networks. The performance of the HBV model was
assessed using different model performance evaluation criteria for the calibration and
validation periods.

A number of simulation experiments were carried out in accordance to the study ob-
jective. A first set of experiments considered the spatial representation of precipitation10

from varying raingauge networks. It showed that the number and spatial distribution
of raingauges affect the simulation results. It was found that the over all model per-
formances worsen radically with an excessive reduction of raingauges. However, the
overall performances were not significantly improved by increasing the number of rain-
gauges more than a certain threshold number. A significant inability to represent the15

spatial precipitation fields using network consisting of less number of raingauges are
observed in the summer season particularly for the smaller subcatchment.

A second set of analysis considered the model calibration using one type of input
precipitation and was run using another type of precipitation data. The analysis indi-
cated that models using different raingauge networks might need their parameters re-20

calibrated. Specifically, the HBV calibrated with dense information fails when run with
sparse information. However, the HBV calibrated with sparse information can perform
well when run with dense information.

A third set of experiments analyzed the reliability of supplementing missing precipita-
tion measurements used for the calibration with data estimated using a multiple linear25

regression technique, and running the model using that precipitation combined with
observed precipitation. The results showed that the model performs well when cali-
brated with a complete set of observed precipitation and when run with an incomplete
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observed data set combined with estimated data. This result offers an encouraging per-
spective for the implementation of such a procedure for an operational flood forecasting
system. Further research is needed in this direction to prove the practical applicability.
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Table 1. Summary of the sizes of the different subcatchments. This also contains the drainage
area of each discharge gauges.

Gauging station (River) Subcatchment size [km2] Drainage area [km2]

1 Rottweil (Neckar) 454.65 454.65
2 Oberndorf (Neckar) 240.13 694.78
3 Horb (Neckar) 420.18 1114.96
4 Bad Imnau (Eyach) 322.94 322.94
5 Rangendingen (Starzel) 119.89 119.89
6 Tuebingen Blaesibg (Steinlach) 140.21 140.21
7 Kirchentellinsfurt (Neckar) 613.33 2311.33
8 Wannweil (Echaz) 135.26 135.26
9 Riederich (Erms) 169.84 169.84
10 Oberensingen (Aich) 178.18 178.18
11 Suessen (Fils) 345.74 345.73
12 Plochingen (Fils) 349.09 694.83
13 Plochingen (Neckar) 472.05 3961.49
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Table 2. Model performance using precipitation resulting from different numbers of raingauges
during the calibration period.

Number of Horb (Neckar) Suessen (Fils) Plochingen (Neckar)
raingauges

R2
m Rel. Peak RMSE R2

m Rel. Peak RMSE R2
m Rel. Peak RMSE

accdif. error accdif. error accdif. error

5 0.82 −0.05 −0.17 7.70 0.72 0.00 −0.14 3.33 0.84 −0.03 −0.06 20.54
10 0.83 0.04 −0.10 7.37 0.77 −0.02 −0.12 3.08 0.86 0.00 −0.10 18.80
15 0.86 0.01 −0.13 6.76 0.75 −0.02 −0.12 3.18 0.87 0.01 −0.10 18.53
20 0.86 0.02 −0.11 6.80 0.77 0.01 −0.10 3.03 0.87 0.00 −0.08 18.42
30 0.85 0.02 −0.08 6.86 0.77 −0.01 −0.11 3.02 0.88 −0.01 −0.12 18.59
40 0.85 0.02 −0.08 7.04 0.77 −0.03 −0.10 3.05 0.86 0.00 −0.07 18.97
51 0.84 0.04 −0.05 7.24 0.76 0.00 −0.12 3.11 0.86 −0.02 −0.08 19.13
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Table 3. Model performance using precipitation resulting from different numbers of raingauges
during the validation period.

Number of Horb (Neckar) Suessen (Fils) Plochingen (Neckar)
raingauges

R2
m Rel. Peak RMSE R2

m Rel. Peak RMSE R2
m Rel. Peak RMSE

accdif. error accdif. error accdif. error

5 0.81 0.06 −0.12 8.47 0.76 0.08 −0.19 3.03 0.84 0.05 −0.01 20.85
10 0.81 0.05 −0.11 8.61 0.79 0.09 −0.14 2.82 0.87 0.04 −0.09 19.20
15 0.83 0.09 −0.12 8.05 0.80 0.09 −0.19 2.76 0.87 0.07 −0.06 18.96
20 0.85 0.09 −0.12 7.99 0.79 0.13 −0.15 2.86 0.87 0.06 −0.06 18.99
30 0.84 0.09 −0.09 7.80 0.80 0.10 −0.17 2.78 0.89 0.05 −0.10 18.65
40 0.83 0.10 −0.09 7.99 0.79 0.09 −0.15 2.81 0.86 0.06 −0.06 19.35
51 0.82 0.11 −0.07 8.16 0.77 0.12 −0.16 2.93 0.87 0.04 −0.06 19.10
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Table 4. Mean model performance and parameters’ transferability obtained using the precipi-
tation produced from different raingauge networks.

Number of Mean model Model parameters’
raingauges performance transferability

5 0.74 0.12
10 0.78 0.03
15 0.80 0.04
20 0.80 0.04
30 0.82 0.04
40 0.80 0.05
51 0.80 0.05
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Table 5. Model performances using the input precipitation information obtained from different
number of raingauges.

Rottweil Horb Riederich Suessen Plochingen Plochingen
(Neckar) (Neckar) (Erms) (Fils) (Fils) (Neckar)

10/10

R2
m 0.74 0.80 0.75 0.79 0.82 0.87

Rel. acc. diff. −0.05 0.07 −0.01 0.09 0.12 0.04
Peak error −0.23 −0.14 −0.06 −0.14 −0.16 −0.09
RMSE 3.74 8.61 1.05 2.82 5.03 19.20

20/20

R2
m 0.78 0.83 0.76 0.79 0.81 0.87

Rel. acc. diff. 0.00 0.09 0.02 0.13 0.17 0.06
Peak error −0.07 −0.12 −0.03 −0.15 −0.16 −0.06
RMSE 3.49 7.99 1.03 2.86 5.07 18.99

10/20

R2
m 0.74 0.82 0.77 0.78 0.80 0.88

Rel. acc. diff. −0.18 −0.03 0.00 0.13 0.19 0.01
Peak error −0.36 −0.25 −0.06 −0.13 −0.12 −0.13
RMSE 3.75 8.10 1.02 2.91 5.22 18.06

20/10

R2
m 0.66 0.77 0.75 0.79 0.82 0.84

Rel. acc. diff. 0.13 0.19 0.00 0.09 0.10 0.08
Peak error 0.08 0.00 −0.04 −0.16 −0.20 −0.01
RMSE 4.28 9.32 1.06 2.79 4.95 20.84
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Table 6. Nash-Sutcliffe coefficients at 7 days and 30 days time scale obtained using different
level of precipitation input information for selected six gauges for the validation period.

Gauge Number of raingauges Nash-Sutcliffe coefficient

7 days time scale 30 days time scale

Rottweil (Neckar)
20/10 0.76 0.82
20/20MulRgre 0.86 0.90

Oberndorf (Neckar)
20/10 0.69 0.77
20/20MulRgre 0.83 0.88

Horb (Neckar)
20/10 0.80 0.82
20/20MulRgre 0.89 0.91

Suessen (Fils)
20/10 0.82 0.80
20/20MulRgre 0.82 0.80

Plochingen (Fils)
20/10 0.85 0.83
20/20MulRgre 0.85 0.82

Plochingen (Neckar)
20/10 0.88 0.90
20/20MulRgre 0.90 0.92
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Fig. 1. Study area: Upper Neckar catchment in south-west Germany (upper-right: 13 sub-
catchments of the Upper Neckar catchment).
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 Fig. 2. Geographic locations of selected raingauge networks.
3718

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/3691/2006/hessd-3-3691-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/3691/2006/hessd-3-3691-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 3691–3726, 2006

Rainfall network on
model calibration and

application
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Fig. 3. Standard deviation of areally averaged precipitation vs. number of raingauges.
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Fig. 4. Overall average Nash-Sutcliffe coefficient using the precipitation resulting from different
raingauge networks for the calibration period (left panel) and validation period (right panel).
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Fig. 5. Seasonal Nash-Sutcliffe coefficients using the precipitation produced from different
number of raingauges during the validation period for the gauges at Suessen (Fils) (left panel)
and Plochingen (Neckar) (right panel).
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Fig. 6. Event statistics for each annual maximum flood event using different raingauge networks
during the validation period for the gauge at Horb (Neckar): average absolute error (left panel)
and root mean squared error (right panel).
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Fig. 7. Event statistics for each annual maximum flood event using different raingauge networks
during the validation period for the gauge at Suessen (Fils): average absolute error (left panel)
and root mean squared error (right panel).
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Fig. 8. Nash-Sutcliffe coefficient obtained using different level of precipitation input information
for the validation period for selected six gauges.
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Fig. 9. Seasonal Nash-Sutcliffe coefficient using precipitation obtained from different rain-
gauges and estimated precipitation during the validation period for the gauges at Oberndorf
(Neckar) (left panel) and Horb (Neckar) (right panel).
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Fig. 10. Event statistics for each annual maximum flood event during the validation period
using precipitation obtained from different raingauge networks and estimated precipitation for
the gauge at Rottweil (Neckar): average absolute error (left panel) and root mean squared error
(right panel).
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